441 research outputs found

    An FTIR Microspectroscopy Ratiometric Approach for Monitoring X-ray Irradiation Effects on SH-SY5Y Human Neuroblastoma Cells

    Get PDF
    The ability of Fourier transform infrared (FTIR) spectroscopy in analyzing cells at a molecular level was exploited for investigating the biochemical changes induced in protein, nucleic acid, lipid, and carbohydrate content of cells after irradiation by graded X-ray doses. Infrared spectra from in vitro SH-SY5Y neuroblastoma cells following exposure to X-rays (0, 2, 4, 6, 8, 10 Gy) were analyzed using a ratiometric approach by evaluating the ratios between the absorbance of significant peaks. The spectroscopic investigation was performed on cells fixed immediately (t0 cells) and 24 h (t24 cells) after irradiation to study both the initial radiation-induced damage and the effect of the ensuing cellular repair processes. The analysis of infrared spectra allowed us to detect changes in proteins, lipids, and nucleic acids attributable to X-ray exposure. The ratiometric analysis was able to quantify changes for the protein, lipid, and DNA components and to suggest the occurrence of apoptosis processes. The ratiometric study of Amide I band indicated also that the secondary structure of proteins was significantly modified. The comparison between the results from t0 and t24 cells indicated the occurrence of cellular recovery processes. The adopted approach can provide a very direct way to monitor changes for specific cellular components and can represent a valuable tool for developing innovative strategies to monitor cancer radiotherapy outcome

    The current status of decision-making procedures and quality assurance in Europe: an overview

    Get PDF
    The 2005 Report on Social Responsibility and Health of the UNESCO International Bioethics Committee (Ibc) proposes a new approach to implementing the right to healthcare and suggests a number of Courses of Action to be followed in various fields. Based on the latest available data, we intend to present an overview of the current state of European health systems in two of those fields-decision-making procedures and quality assurance in health care-and to attempt a comparison of the situation with the Report's provisions, in order to pave the way for the identification of what still has to be done to bridge international recommendations and the reality of policy and practice in Europe's health care

    NEPTUNE (Nuclear process-driven Enhancement of Proton Therapy UNravEled)

    Get PDF
    Protontherapy is an important radiation modality that has been used to treat cancer for over 60 years. In the last 10 years, clinical proton therapy has been rapidly growing with more than 80 facilities worldwide [1]. The interest in proton therapy stems from the physical properties of protons allowing for a much improved dose shaping around the target and greater healthy tissue sparing. One shortcoming of protontherapy is its inability to treat radioresistant cancers, being protons radiobiologically almost as effective as photons. Heavier particles, such as 12C ions, can overcome radioresistance but they present radiobiological and economic issues that hamper their widespread adoption. Therefore, many strategies have been designed to increase the biological effectiveness of proton beams. Examples are chemical radiosensitizing agents or, more recently, metallic nanoparticles. The goal of this project is to investigate the use of nuclear reactions triggered by protons generating short-range high- LET alpha particles inside the tumours, thereby allowing a highly localized DNA-damaging action. Specifically, we intend to consolidate and explain the promising results recently published in [2], where a significant enhancement of biological effectiveness was achieved by the p-11B reaction. Clinically relevant binary approaches were first proposed with Boron Neutron Capture Therapy (BNCT), which exploits thermal neutron capture in 10B, suitably accumulated into tumour before irradiation. The radiosensitising effects due to the presence of 10B will be compared to those elicited by p-11B, using the same carrier and relating the observed effects with intracellular 11B and 10B distribution as well as modelled particle action and measured dose deposition at the micro/nanometer scale. Moreover, the p-19F reaction, which also generates secondary particles potentially leading to local enhancement of proton effectiveness, will be investigated. The in-vivo imaging of 11B and 19F carriers will be studied, in particular by optimizing 19F-based magnetic resonance

    different approaches to ft ir microspectroscopy on x ray exposed human cells

    Get PDF
    Fourier-Transform Infrared microspectroscopy (ÎŒFT-IR) has been usefully applied in the analysis of the complex biological processes occurring during X-ray radiation-cell interaction. Different experimental approaches are available for FT-IR spectra collection (transmission, attenuated total reflection (ATR), and transflection modes) from cells samples. Recently, some problems have been raised about the role of transmitted and reflected components of the infrared beam in transflection mode. For this reason, we investigated two different transflection approaches for collecting spectra from cells exposed to X-ray. In the former approach, cells were grown on MirrIR slides, and for the second approach, cell pellets were prepared. In both cases, SH-SY5Y neuroblastoma cells were used. X-ray exposure was performed at doses of 2 and 4 Gy. Spectra were obtained by using both the approaches in the 600–4000 cm−1 spectral range from exposed and not-exposed samples. The main contributions from proteins, lipids, carbohydrates, and DNA were clearly evidenced in spectra obtained with the two different acquisition approaches. A comparison among them has been also reported

    A New Low-Energy Proton Irradiation Facility to Unveil the Mechanistic Basis of the Proton-Boron Capture Therapy Approach

    Get PDF
    Protontherapy (PT) is a fast-growing cancer therapy modality thanks to much-improved normal tissue sparing granted by the charged particles' inverted dose-depth profile. Protons, however, exhibit a low biological effectiveness at clinically relevant energies. To enhance PT efficacy and counteract cancer radioresistance, Proton–Boron Capture Therapy (PBCT) was recently proposed. PBCT exploits the highly DNA-damaging α-particles generated by the p + 11B→3α (pB) nuclear reaction, whose cross-section peaks for proton energies of 675 keV. Although a significant enhancement of proton biological effectiveness by PBCT has been demonstrated for high-energy proton beams, validation of the PBCT rationale using monochromatic proton beams having energy close to the reaction cross-section maximum is still lacking. To this end, we implemented a novel setup for radiobiology experiments at a 3-MV tandem accelerator; using a scattering chamber equipped with an Au foil scatterer for beam diffusion on the biological sample, uniformity in energy and fluence with uncertainties of 2% and 5%, respectively, was achieved. Human cancer cells were irradiated at this beamline for the first time with 685-keV protons. The measured enhancement in cancer cell killing due to the 11B carrier BSH was the highest among those thus far observed, thereby corroborating the mechanistic bases of PBCT

    Evaluation of Proton-Induced Biomolecular Changes in MCF-10A Breast Cells by Means of FT-IR Microspectroscopy

    Get PDF
    Radiotherapy (RT) with accelerated beams of charged particles (protons and carbon ions), also known as hadrontherapy, is a treatment modality that is increasingly being adopted thanks to the several benefits that it grants compared to conventional radiotherapy (CRT) treatments performed by means of high-energy photons/electrons. Hence, information about the biomolecular effects in exposed cells caused by such particles is needed to better realize the underlying radiobiological mechanisms and to improve this therapeutic strategy. To this end, Fourier transform infrared microspectroscopy (-FT-IR) can be usefully employed, in addition to long-established radiobiological techniques, since it is currently considered a helpful tool for examining radiation-induced cellular changes. In the present study, MCF-10A breast cells were chosen to evaluate the effects of proton exposure using -FT-IR. They were exposed to different proton doses and fixed at various times after exposure to evaluate direct effects due to proton exposure and the kinetics of DNA damage repair. Irradiated and control cells were examined in transflection mode using low-e substrates that have been recently demonstrated to offer a fast and direct way to examine proton-exposed cells. The acquired spectra were analyzed using a deconvolution procedure and a ratiometric approach, both of which showed the different contributions of DNA, protein, lipid, and carbohydrate cell components. These changes were particularly significant for cells fixed 48 and 72 h after exposure. Lipid changes were related to variations in membrane fluidity, and evidence of DNA damage was highlighted. The analysis of the Amide III band also indicated changes that could be related to different enzyme contributions in DNA repair

    FT-IR Transflection Micro-Spectroscopy Study on Normal Human Breast Cells after Exposure to a Proton Beam

    Get PDF
    Fourier transform infrared micro-spectroscopy (mu-FT-IR) is nowadays considered a valuable tool for investigating the changes occurring in human cells after exposure to ionizing radiation. Recently, considerable attention has been devoted to the use of this optical technique in the study of cells exposed to proton beams, that are being increasingly adopted in cancer therapy. Different experimental configurations are used for proton irradiation and subsequent spectra acquisition. To facilitate the use of mu-FT-IR, it may be useful to investigate new experimental approaches capable of speeding up and simplifying the irradiation and measurements phases. Here, we propose the use of low-e-substrates slides for cell culture, allowing the irradiation and spectra acquisition in transflection mode in a fast and direct way. In recent years, there has been a wide debate about the validity of these supports, but many researchers agree that the artifacts due to the presence of the electromagnetic standing wave effects are negligible in many practical cases. We investigated human normal breast cells (MCF-10 cell line) fixed immediately after the irradiation with graded proton radiation doses (0, 0.5, 2, and 4 Gy). The spectra obtained in transflection geometry showed characteristics very similar to those present in the spectra acquired in transmission geometry and confirm the validity of the chosen approach. The analysis of spectra indicates the occurrence of significant changes in DNA and lipids components of cells. Modifications in protein secondary structure are also evidenced

    Highly-integrated programs for the prevention of obesity and overweight in children and adolescent: results from a systematic review and meta-analysis.

    Get PDF
    Background: Since overweight and obesity has become epidemic in children and adolescent, the aim of this study was to determine the role of highly-integrated programs in preventing and reducing prevalence of children and adolescent obesity and overweight. Methods: A systematic review of literature and a meta-analysis was conducted. Results: According to PRISMA guidelines, we identified 23 studies describing 14 programs. For 11 out of 14 programs, obese/overweight prevalence changing from baseline were definable and meta-analysis of them showed a significant change of obese/overweight prevalence (-0.03; 95% CI = -0.04 to -0.01; P < 0.0001). Secondary outcomes as dietary (such as vegetable intake, carbonated beverages, fruit juice, drinks, healthful food consumption), physical activity and TV-time-spent was analyzed in many of the studies to define community readiness and behavioral changes. Macro-interventions, based on what was observed in our systematic review have a high potential to reach the entire population. Conclusion: Adoption of coordinated cross-sectoral, multi-component and multi-stakeholder initiatives to oppose obesity remains a challenge, but it is also desirable as one of the possible solutions to this major public health issue
    • 

    corecore